Multiway Spectral Clustering: A Margin-Based Perspective
نویسندگان
چکیده
Spectral clustering is a broad class of clustering procedures in which an intractable combinatorial optimization formulation of clustering is “relaxed” into a tractable eigenvector problem, and in which the relaxed solution is subsequently “rounded” into an approximate discrete solution to the original problem. In this paper we present a novel margin-based perspective on multiway spectral clustering. We show that the margin-based perspective illuminates both the relaxation and rounding aspects of spectral clustering, providing a unified analysis of existing algorithms and guiding the design of new algorithms. We also present connections between spectral clustering and several other topics in statistics, specifically minimum-variance clustering, Procrustes analysis and Gaussian intrinsic autoregression. AMS 2000 subject classification: 62H30
منابع مشابه
Minimum Conditional Entropy Clustering: A Discriminative Framework for Clustering
In this paper, we introduce an assumption which makes it possible to extend the learning ability of discriminative model to unsupervised setting. We propose an informationtheoretic framework as an implementation of the low-density separation assumption. The proposed framework provides a unified perspective of Maximum Margin Clustering (MMC), Discriminative k -means, Spectral Clustering and Unsu...
متن کاملSpectral Graph Clustering
Spectral clustering is a powerful technique in data analysis that has found increasing support and application in many areas. This report is geared to give an introduction to its methods, presenting the most common algorithms, discussing advantages and disadvantages of each, rather than endorsing one of them as the best, because, arguably, there is no black-box algorithm, which performs equally...
متن کاملTensor Decompositions: A New Concept in Brain Data Analysis?
Matrix factorizations and their extensions to tensor factorizations and decompositions have become prominent techniques for linear and multilinear blind source separation (BSS), especially multiway Independent Component Analysis (ICA), Nonnegative Matrix and Tensor Factorization (NMF/NTF), Smooth Component Analysis (SmoCA) and Sparse Component Analysis (SCA). Moreover, tensor decompositions hav...
متن کاملMultiway Spectral Clustering with Out-of-Sample Extensions through Weighted Kernel PCA
This article is a report on the paper Multiway Spectral Clustering with Out-of-Sample Extensions through Weighted Kernel PCA by C. Alzate and J. Suykens, 2010. The method introduced in the paper is summarized: it is a spectral clustering approach formulated as weighted kernel principal component analysis, extended to more than two clusters, and endowed with an out-of-sample extension that permi...
متن کاملMaximum Margin Clustering
We propose a new method for clustering based on finding maximum margin hyperplanes through data. By reformulating the problem in terms of the implied equivalence relation matrix, we can pose the problem as a convex integer program. Although this still yields a difficult computational problem, the hard-clustering constraints can be relaxed to a soft-clustering formulation which can be feasibly s...
متن کامل